Nondestructive X-ray diffraction measurement of warpage in silicon dies embedded in integrated circuit packages1
نویسندگان
چکیده
Transmission X-ray diffraction imaging in both monochromatic and white beam section mode has been used to measure quantitatively the displacement and warpage stress in encapsulated silicon devices. The displacement dependence with position on the die was found to agree well with that predicted from a simple model of warpage stress. For uQFN microcontrollers, glued only at the corners, the measured misorientation contours are consistent with those predicted using finite element analysis. The absolute displacement, measured along a line through the die centre, was comparable to that reported independently by high-resolution X-ray diffraction and optical interferometry of similar samples. It is demonstrated that the precision is greater than the spread of values found in randomly selected batches of commercial devices, making the techniques viable for industrial inspection purposes.
منابع مشابه
Non-Destructive Laboratory-Based X-Ray Diffraction Mapping of Warpage in Si Die Embedded in IC Packages
Reliability issues as a consequence of thermal/mechanical stresses created during packaging processes have been the main obstacle towards the realisation of high volume 3D Integrated Circuit (IC) integration technology for future microelectronics. However, there is no compelling laboratory-based metrology that can non-destructively measure or image stress/strain or warpage inside packaged chips...
متن کاملSurface Hardness Measurment and Microstructural Characterisation of Steel by X-Ray Diffraction Profile Analysis
An X-ray diffraction line will broaden considerably when steels change into martensitic structure on quenching. The results presented in this paper show that X-ray diffraction technique can be employed for a rapid and nondestructive measurement of hardness of hardened steel. Measurement on various quenched and tempered steels showed that the breadth of its diffraction peak increased with increa...
متن کاملAnalytical and Experimental Studies of 2.5d Silicon Interposer Warpage: Impact of Assembly Sequences, Materials Selection and Process Parameters
We compare the influence of different assembly sequences, process parameters and material properties on the resulting package and interposer warpage in 3D stacking configurations. To this end, extensive thermo-mechanical simulations were performed to conduct virtual design of experiments (DOEs) with variables such as substrate and molding material properties, component dimensions, process tempe...
متن کاملNanoscale Strain Characterization in Microelectronic Materials Using X-ray Diffraction
The engineering of strained semiconductor materials represents an important aspect of the enhancement in CMOS device performance required for current and future generations of microelectronic technology. An understanding of the mechanical response of the Si channel regions and their environment is key to the prediction and design of device operation. Because of the complexity of the composite g...
متن کاملNano Dispersed Metal-Ceramic Composite Materials of the Ni-SiO2 system
In the organic field effect transistors (OFETs) generation, the silicon gate oxide is 1-2 nm thick. A shrinking of this thickness down to less than 1 nm for the next generation will led to a couple of orders of magnitude increase in tunnelling as well as leakage currents. NiO-SiO2 can be used in a variety of devices, such as in circuit boards and detectors, including sensors, due to its porous ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 50 شماره
صفحات -
تاریخ انتشار 2017